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The abili ty of th ree -d imens iona l quan t i t a t ive s t r u c t u r e - a c t i v i t y re la t ionships (QSAKs) derived 
from classical QSAR descr ip tors a n d s imi lar i ty indices to ra t ional ize t h e activity of 28 
N - t e r m i n u s f r agmen t s of t a chyk in in N K l receptor an t agon i s t s was examined . Two different 
types of ana lyses , pa r t i a l l eas t s q u a r e s and mul t ip le regress ion, were performed in order to 
check the r o b u s t n e s s of each der ived model . The models derived us ing classical QSAR 
descr ip tors l acked accu ra t e q u a n t i t a t i v e a n d predic t ive abi l i t ies to describe t h e n a t u r e of t h e 
r e c e p t o r - i n h i b i t o r in te rac t ion . However models der ived us ing 3D QSAR descr ip tors based on 
s imi lar i ty indices were both robus t and significantly predict ive. The best model was obta ined 
t h r o u g h t h e s ta t i s t i ca l ana lys i s of molecular field s imi lar i ty indices (n — 28, r- = 0.846, r(cv)2 

= 0.737, s = 0.987, P R E S S = 7.102) sugges t ing t h a t electronic a n d s ize-related proper t ies a re 
t h e most r e l evan t in exp la in ing t h e affinity d a t a of t h e t r a i n i n g set. The overall qua l i ty and 
predict ive abili ty of the models applied to the tes t set appea r to be very high, since the predicted 
affinities of t h r e e t e s t compounds agree wi th the exper imenta l ly de t e rmined affinities obtained 
subsequen t ly w i th in t h e expe r imen ta l e r ror of t h e b ind ing da ta . 

I n t r o d u c t i o n 

Substance P (SP),1-2 an undecapeptide neurotrans­
mitter, is one of five peptides belonging to the tachy­
kinin family, isolated from mammals . They all share a 
common C-terminal sequence essential for biological 
activity3 ° and are found throughout the peripheral and 
central nervous systems. 

SP interacts preferentially with the N K l receptor, one 
of a t least three pharmacologically distinct tachykinin 
receptor types,6 ' and it is thought to be involved in a 
variety of biological actions including pain transmission 
and neurogenic inflammation,8-9 vasodilation, smooth 
muscle contraction, bronchoconstriction, saliva secre­
tion,10 and activation of the immune system. Therefore, 
pain, inflammation, and a s thma are potential thera­
peutic targets for SP antagonis ts . 

The recognition of the key amino acid residues 
responsible for antagonist activity11-12 recently led to the 
identification of several high-affinity small peptidic SP 
antagonists.™'"1-'' However a number of potent nonpep-
tide N K l tachykinin receptor antagonists16~20 have been 
identified primarily as a resul t of database screening. 
The rational design strategy2 1 involved the independent 
optimization of the N- and C-terminal s t r u c t u r e -
activity relat ionships (SAR) of the compound shown in 
Figure 1. Such an approach assumes t ha t the binding 
energies of the N- and C-terminus moieties are additive 
as the ligand interacts with the receptor active site.22 

Following on from the SAR studies,2 1 this paper de­
scribes several quanti tat ive structure—activity relation­
ship (QSAR) studies involved in defining and under­
s tanding the relationship between the properties of 
N- terminus subst i tuents of N K l antagonists and their 
overall affinities. 

Firstly, models derived from classical QSAR descrip­
tors are presented and discussed. Although there are 

• 'Abstract published in Advance ACS Abstracts. October 1. 1995. 
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Figure 1. Chemical structure of compound 12, 

many examples in the l i t e ra ture 2 ' 26 where classical 
QSAR descriptors have been used very successfully, 
such techniques necessarily are limited by their in­
adequate t rea tment of the three-dimensional na tu re of 
the compounds and their restricted applicability beyond 
the limit of a congeneric series.2 ' '2 ' ' 

The biological action of drugs results essentially from 
their chemical structure which adapts itself to the three-
dimensional s t ructure of the receptor by forming a 
complex with it. The receptor sees the drug in te rms 
of the intermolecular forces (mainly electrostatic and 
sterici between them. Hence molecular descriptors 
based on similarity of shape and/or electrostatic proper­
ties may be expected to correlate with binding affinity 
of drugs. Therefore in the second set of QSAR analyses, 
similarity indices represent ing steric, electrostatic and 
lipophilic properties were introduced due to their topo­
graphical na ture . 2 , 2H 

A measurement of how similar one molecule is to 
another in respect of a chosen 3D property has proved 
to be a useful parameter in studies of relationships 
between molecular structure and binding affinity.2, in '' 
Correlations were derived mainly by relating binding 
affinity to the similarity data obtained from comparison 
to a single compound usually that with the highest 
binding affinity. : , i 'v An al ternative approach is to use 
part ial least squares (PLS)*''-i!i to analyze the correla­
tions between the affinity data and a data matr ix 
obtained by calculating similarity indices between each 
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C h a r t 1. Three Al ignment Points for Six Representa t ive 
Classes of N-Terminus F r a g m e n t s 

"3 
V, • _ 

molecule a n d eve ry o ther . A s i m i l a r a p p r o a c h w a s used 
ini t ial ly w i th in t h e compara t ive molecu la r field ana lys i s 
(CoMFA) me thodo logy 3 3 wh ich g a v e a n exce l l en t cor­
re la t ion w i t h t h e b i n d i n g d a t a for a s t e ro id d a t a set . 
Recen t r e s u l t s s u g g e s t t h a t s imi l a r i t y m a t r i c e s can be 
used also to der ive good Q S A R mode l s for m a n y differ­
e n t s y s t e m s . 3 6 4 1 T h e r e s u l t s ob t a ined u s i n g s i m i l a r i t y 
indices c o m p a r e wel l w i t h t hose a c h i e v e d u s i n g 
CoMFA. 4 1 

M e t h o d s 

All molecular model ing, calculat ions , a n d opt imiza t ion 
w e r e pe r fo rmed u s i n g SYBYL 4 2 ve r s ions 6.00 a n d 6.10 
r u n n i n g on a Silicon G r a p h i c s I r i s 4D/310GTX work­
s t a t ion . In i t ia l ly t h e a s s u m p t i o n w a s m a d e t h a t t h e 
overal l 3 D s t r u c t u r e is t h e s a m e for e a c h N - t e r m i n u s 
s u b s t i t u e n t . Therefore only t h e N - t e r m i n u s f r a g m e n t s 
were used for t h e following r ea sons : (i) al l t h e r e c e n t 
a n d p rev ious ly r e p o r t e d biological d a t a 2 1 a r e c o n s i s t e n t 
w i t h a s ingle compe t i t i ve m o d e of b i n d i n g ; (ii) t h e 
cen t r a l a n d C- te rmina l p a r t s of al l molecules a r e ident i ­
cal , h e n c e differences in b i n d i n g shou ld be assoc ia ted 
exclusively w i t h t h e N - t e r m i n u s p a r t of t h e molecule ; 
a n d (iii) s ince some p r o p e r t i e s ( s imi la r i ty indices) u s e d 
in t h e Q S A R a n a l y s e s were assoc ia ted w i t h 3D-molec-
u l a r p rope r t i e s , sma l l differences in s u c h p r o p e r t i e s 
would b e e m p h a s i z e d by u s i n g t h e s m a l l e r N - t e r m i n u s 
f r a g m e n t s r a t h e r t h a n be ing lost in t h e l a r g e r s t r uc ­
t u r e s . Addi t ional ly , t he ca lcu la t ion of t h e p rope r t i e s for 
whole molecules would be s ignif icant ly s lower w i t h o u t 
provid ing a n y add i t i ona l in format ion . T h e s t a r t i n g 
f r a g m e n t s were e x t r a c t e d from t h e SYBYL f r a g m e n t 
l i b r a r y a n d energe t i ca l ly op t imized u s i n g t h e T R I P O S 
force field.43 T h e l ib ra ry is a d a t a b a s e of sma l l mol­
ecules wh ich r e p r e s e n t a v e r a g e d g e o m e t r i e s from t h e 
C a m b r i d g e c rys ta l lograph ic d a t a files. A n y add i t i ona l 
a t o m s or g roups w e r e added u s i n g t h e mode l ing pro­
g r a m SYBYL wi th s t a n d a r d bond l e n g t h s a n d a n g l e s , 
e n s u r i n g iden t ica l s t a r t i n g g e o m e t r y for a n y g iven 
s u b s t i t u e n t . F ina l ly t h e r e s u l t a n t s t r u c t u r e s w e r e 
s u p e r i m p o s e d by l e a s t s q u a r e s fitting a s ind ica ted in 
C h a r t 1 u s i n g t h e F I T op t ion w i t h i n SYBYL. T h e 
c h o s e n a l i g n m e n t w a s def ined b y t h e first two a t o m s 
a s a n obvious choice b e c a u s e t h e y a r e c o m m o n to al l 
molecules u n d e r s tudy . T h e t h i r d a t o m w a s chosen such 
t h a t t h e dipole of t h e fitted molecule co r r e sponded m o s t 
closely to t h e dipole of t h e m o s t ac t ive compound . 

C h a r g e s were ca lcu la ted u s i n g t h e C h a r g e - 2 m e t h o d . 
C h a r g e - 2 is a n empi r i ca l m e t h o d wh ich h a s b e e n used 
successfully in a wide v a r i e t y of chemica l c lasses . 4 4 I t 
is b a s e d on two f u n d a m e n t a l c h e m i c a l concepts : (i) 
induct ive effect in s a t u r a t e d molecules ope ra t i ng via t he 
a tomic e l ec t ronega t iv i ty a n d po la r i zab i l i ty a n d (ii) 

Figure 2. Superimposed N-terminus molecular fragments of 
the 28 NKl antagonists. 

Table 1. Definition of Variables Calculated by TSAR 

variable definition of variables" 

Xl molecular volume 
X2 log P 
X3 square of log P 
X4 total dipole 
X5 number of methyl groups 
X6 surface area 
X7 moments of inertia X-moment 
X8 moments of inertia Y-moment 
X9 moments of inertia Z-moment 
XlO ellipsoidal volume 
Xl 1 molar refractivity 
Xl2 molecular mass 
X13 Kier shape index Kappaal 
X14 Kier shape index Kappau2 
X15 Kier shape index Kappaa3 
X16 flexibility (0) 
X17 total number of atoms 
X18 number of C atoms 
X19 number of heteroatoms 
X20 total lipole 
X21 moments of inertia x-axis length 
X22 moments of inertia y-axis length 
X23 moments of inertia z-axis length 
X24 Kier connectivity index ChiVO 
X25 Kier connectivity index ChiVl (path) 
X26 Kier connectivity index ChiV2 (path) 
X27 Kier connectivity index ChiV3 (cluster) 
X28 Kier connectivity index ChiV4 (cluster) 
X29 Kier connectivity index ChiV5 (cluster/path) 
X30 Kier connectivity index ChiV3 (path) 
X31 Kier connectivity index ChiV4 (path) 
X32 Kier connectivity index ChiV5 (path) 
X33 Kier connectivity index ChiV5 (ring) 
X34 Kier connectivity index ChiV6 (ring) 
X35 Randic topological index 
X36 Balaban topological index 
X37 Wiener topological index 

" The variables are defined as described in ref 45. 

Hiickel m o l e c u l a r orb i ta l ca l cu la t ions for n s y s t e m s 
o p e r a t i n g t h r o u g h t h e a p p r o p r i a t e Cou lomb a n d reso­
n a n c e i n t e g r a l s . 

All supe rpos i t i oned molecu la r f r a g m e n t s s h o w n in 
F i g u r e 2 were t h e n loaded via SYBYL mol2 files in to a 
d a t a t ab l e w i th in t h e g r aph i c s -based Q S A R p r o g r a m 
T S A R 4 5 ve r s ion 2.20. T h e or ig ina l affinity d a t a (ICso, 
n M ) for e a c h molecule w a s e n t e r e d into t h e t ab le , a n d 
a n e w affinity co lumn w a s t h e n g e n e r a t e d by t a k i n g t h e 
n e g a t i v e l o g a r i t h m of t h e or ig ina l d a t a (pICso). T h e 
e n t i r e r a n g e of mo lecu la r p r o p e r t i e s w a s ca lcu la ted 
u s i n g TSAR (Table 1). T h e molecu la r p roper ty calcula­
t ion in T S A R u s e s 3 D - s t r u c t u r a l in format ion s to red in 
t h e d a t a t ab l e . 

T h e concept of b io i sos te r i sm w a s u s e d a s t h e bas i s 
for c a l c u l a t i n g s imi l a r i t y ind ices . 2 9 S i m i l a r i t y indices 
r e p r e s e n t a q u a n t i t a t i v e m e a s u r e of t h e s imi l a r i t y 
b e t w e e n t w o molecu les on t h e bas i s of t h e i r s ize , s h a p e , 
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electronic distribution, lipid solubility, water solubility, 
or chemical reactivity.46 There are two approaches to 
calculating similarity indices, a grid-based method28-29 

and a Gaussian approximation37,38. For grid-based 
methods, a 3D grid of points surrounding the two 
molecules is compared. The similarity calculations are 
performed by numerical integration of the potential and 
field across the 3D grid using the Carbo or Hodgkin 
equations.28-29 The Carbo equation28 is sensitive to the 
shape of a property's distributions but not to its overall 
magnitude. The Hodgkin index29 was introduced in 
order to increase the sensitivity of the formula to a 
property's magnitude. Both indices are highly cor­
related, and there is hardly any difference in their 
overall performance.41 The shape similarity indices are 
calculated using Meyer's47 modification of the Carbo and 
Hodgkin equations based on the degree of overlap 
between the two molecules. Grid-based potential, field, 
and shape similarity evaluations are both time consum­
ing and dependent upon the grid size and increment.3738 

The analytical method fits Gaussian curves to reproduce 
the Vr term (electrostatic potential)37 or the electron 
density function for different atom types (shape).38 It 
has been shown that the behavior of the Gaussian 
functions in similarity calculations closely mirrors that 
of the grid-based calculations but is much faster.37-38 

Therefore the following potential and field NxN 
similarity calculations were performed (i) Carbo poten­
tial similarity indices with the Gaussian function ap­
proximation and (ii) Carbo atomic field indices—single-
point grid method. 

All derived data were standardized by mean (zero) 
and standard deviation (unity) and then analyzed using 
various statistical techniques. Principal component 
analyses (PCA) were performed on all similarity data 
extracting only the components that explained up to 
95% of the variance. Also correlations were derived 
using PLS analysis39-40 with different number of prin­
cipal vectors40 and multiple regression (MR) analysis 
with or without stepping procedures.48 For a well-
defined problem, both PLS and MR techniques should 
give similar predictions.49 Cross-validation of all PLS 
and MR analyses was performed to indicate if the 
chance correlations50 were obtained. It gives an esti­
mate of the true predictive power of the model. The 
model is judged based on these predictions by comparing 
predicted values with the exact values from each 
compound that has been held out. The predictions are 
then summed for the nth PLS (MR) dimension to obtain 
a value for the predictive sum of squares (PRESSin,) of 
the model (uncertainty of the prediction). 

Cross-validation is also used in the jackknife proce­
dure39-49 to estimate the standard deviation of the 
regression coefficients. The procedure uses each of the 
reduced matrices during the cross-validation to derive 
a new set of regression coefficients. The spread in the 
values of these coefficients is a conservative measure 
of the standard deviation for each coefficient. The cross-
validation method used in each analysis was a fixed 
pattern of three subsets of data. 

The regression coefficients r2 for the models derived 
using PLS and MR analysis were compared together 
with their corresponding r(cv)2 and PRESS values. 

Results and Discussion 

The N-terminus training set shown in Table 2. was 
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Table 2. Binding Affinity Data for Compounds in Training Set 

compd R pICso 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

composed from the 28 NKl antagonists resulting from 
SAR on N-terminal group with known affinities (pICso 
ranges between ~5.0 and 9.26). 

PLS analyses were performed on the dataset with 
pICso as the dependent variable (Y) and 37 calculated 
physicochemical properties as the independent 
variables—descriptors (X). The results of these analyses 
are shown in Table 3. The number of PLS vectors 
extracted in each analysis was determined according to 
the following criteria: (i) stopping when the statistical 
significance of the current vector goes above a fixed 
value (1.0 by default),40 (ii) stopping at the first decrease 
in PRESS, and (iii) stopping at the lowest value of 
PRESS. The vectors represent the total number of 
cycles of the PLS algorithm used in the analysis. Each 
iteration improves the regression equation but increases 
the risk of overfitting the data. These analyses were 
performed in order to resolve which of the above criteria 
gives the most robust model with significant predictive 
potential. The model from the first of these analyses 
contained only one statistically significant PLS vector,40 

the second model contained three PLS vectors, and the 
third model four PLS vectors. 

It is evident from Table 3 that none of the criteria 
used derived an acceptable model. In the first case, the 
model was not robust enough, r2 = 0.540, and did not 
possess sufficient predictive power, r(cv)2 = 0.366, and 
in the other two cases, the model was overfitting the 
data as indicated by the noticeable difference between 
r2 (0.779, 0.831) and the corresponding rtcv)2 (0.508, 
0.550).52 These results suggest that the classical QSAR 
descriptors used may not be the optimal set for the 
dataset under study.20 In addition to that, PLS does 

CHa-12-benzofuran) 
CH2(2,4-diF-C6H3) 
CH2-(2-F-4-CH3-C6H3> 
CH2-(2,5-diF-C6H3) 
CH2-I2-benzothiophene) 
CH2-(2-F-C6H4) 
CH2-(2-naphthalene) 
CH2-[2-(7-OCH3-benzofuran)] 
CH2-^-OCH3-C6H4) 
CH2-(3.4-diCH3-C6H3) 
CH2-M-CH3-C6H4) 
CH2-C6Hs 
CH2-13-NH2-C6H4) 
CH2-13-CH3-C6H4) 
CH2-(4-Cl-C6H4) 
CH2-13,4-diCl-C6H3) 
CH2-(2-Cl-C6H4) 
CH2-13-Cl-C6H4) 
CH2-(3,4-diF-C6H3) 
CH2-0,4-diOCH3-C6H3) 
CH2-[2-(5-OCH3-benzofuran)] 
2-tetrahydronaphthalene 
CH2-(4-OCOCH3-C6H4) 
CH2-(3-NHCOCH2Cl-C6H4) 
CH2-(9-anthracene) 
CH2-C 4-CH2NHCO2C(CH3J3-C6H4) 
CH2-(3-NHS02CH3-C6H4) 
CH2-O-NHCOCH3-C6H4) 

9.26 
8.72 
8.70 
8.67 
8.62 
8.50 
8.00 
7.89 
7.80 
7.74 
7.72 
7.72 
7.70 
7.65 
7.57 
7.54 
7.48 
7.46 
7.37 
7.01 
6.85 
6.82 
5.96 
5.80 
5.68 
5.43 
5.14 
5.13 
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Table 3. Results of Partial Least Squares Analyses on 37 
Classical QSAR Descriptors 

analysis 

i 6 

2* 
3" 

vector" 

1 
3 
4 

r2 

0.540 
0.779 
0.831 

r(cv)2 

11
1 PRESS 

17.12 
13.27 
12.15 

statistical 
significance 

0.796 
1.227 
1.428 

" Number of vectors (components) represents the total number 
of cycles of the PLS algorithm used in analysis . ' Number of 
vectors included were up to a statistical significance of 1 . c Number 
of vectors included were up to the first decrease in PRESS. 
d Number of vectors included were up to the lowest value of 
PRESS. 

no t h a n d l e very well d a t a w i t h m a n y d e s c r i p t o r s a s ­
socia ted w i t h t h e one c lass of p r o p e r t y (e.g., s ize , shape ) 
a n d only a few associa ted w i t h t h e o t h e r s (electronic a n d 
hydrophobic p roper ty ) . 4 9 I n such a case , s h a p e proper­
t i e s wou ld d o m i n a t e t h e a n a l y s i s by b e i n g r e p r e s e n t e d 
w i t h t h e major i ty of i n d e p e n d e n t v a r i a b l e s , 4 0 b u t t h e y 
a r e no t necessa r i ly t h e m o s t r e l e v a n t p r o p e r t i e s i n 
descr ib ing t h e affinity d a t a of t h e t r a i n i n g set . 

To d i s t i n g u i s h be tween t h e s e two poss ib i l i t ies , t h e 
s a m e d a t a t a b l e w a s sub jec ted t o M R a n a l y s i s . To 
r educe t h e n u m b e r of de sc r ip to r s to a level m a n a g e a b l e 
for M R a n a l y s i s a n d to d e t e r m i n e wh ich of t h e 37 
calcula ted physicochemical p rope r t i e s (see Tab le 1) were 
h ighly corre la ted , 5 2 P C A w a s imp lemen ted . T h e inspec­
t ion of t h e cor re la t ion m a t r i x r e s u l t i n g from PCA shown 
g raph ica l ly in F i g u r e 3 a l lows t h e ex t r ac t i on of j u s t one 
r e p r e s e n t a t i v e p rope r ty from e a c h h igh ly co r r e l a t ed 
c lass . Idea l ly t h e chosen p r o p e r t i e s shou ld be r e a s o n ­
ably c o m m o n a n d e a s y to u n d e r s t a n d a n d i n t e r p r e t . 5 1 

T h e desc r ip to r s se lec ted from e a c h c lass of p r o p e r t i e s 
a r e colored r e d in F i g u r e 3 a n d a r e a s follows: (i) s t e r i c 
r e l a t e d proper ty—surface a r e a (vector 6), (ii) l ipophi l ic 
r e l a t e d property—log P a n d log P 2 (vectors 2 a n d 3) , a n d 
(iii) e lec t ronic r e l a t e d p roper ty—tota l dipole (vector 4). 
Addi t iona l ly t h e n u m b e r of m e t h y l g r o u p s ind ica ted in 
F i g u r e 3 in g reen w a s also used in M R a n a l y s i s . T h e 
to ta l l ipole (vector 20 in F i g u r e 3) is co r r e l a t ed to log P 
a n d the re fore w a s o m i t t e d from MR a n a l y s i s . Kier ' s 
ChiV6 ( r ing) connec t iv i ty index (vector 34 in F i g u r e 3) 
h a s only l imi ted cor re la t ion ( < 5 0 % ) w i t h o t h e r s t e r i c 
( shape) p rope r t i e s , b u t i t w a s n o t u s e d i n M R a n a l y s i s 
s ince i t i s difficult to u n d e r s t a n d a n d i n t e r p r e t i t s 
m e a n i n g . 5 1 T h e s a m e a r g u m e n t w a s i m p l e m e n t e d in 
e l i m i n a t i o n of t h e B a l a b a n topological index (vector 3 6 
i n F i g u r e 3) from a n y M R a n a l y s i s . After se lec t ing a 
r e p r e s e n t a t i v e se t of desc r ip to r s , severa l M R a n a l y s e s 
w e r e per formed w i t h or w i t h o u t s t e p p i n g p r o c e d u r e s , 
a n d t h e r e s u l t s a r e s h o w n in T a b l e 4. 

In bas ic r eg ress ion a n a l y s i s , al l se lec ted X v a r i a b l e s 
a r e u s e d to c r e a t e a r eg re s s ion e q u a t i o n to p r e d i c t Y. 
In s t e p w i s e regress ion , a se lec t ion a l g o r i t h m is u s e d to 
choose a s u b s e t of t h e X v a r i a b l e s , from wh ich a 
r eg re s s ion e q u a t i o n is ca lcu la ted . I n t h e a n a l y s i s w i t h 
s t epwise regress ion , t h e der ived m o d e l h a s only two 
r e l e v a n t descr ip tors ( tota l dipole a n d surface a rea) , bo th 
of which a r e negat ive ly cor re la ted w i t h affinity. Inspec­
t i on of t h e d a t a in T a b l e 4 s h o w s t h a t b o t h p rocedure s 
(bas ic a n d s t epwi se ) p r o d u c e mode l s of c o m p a r a b l e 
qua l i ty . However t h e h i g h e r r eg ress ion coefficient r 2 

of t h e s t epwise model (0 .671 vs 0.615) a n d t h e lower s 
va lue (0 .723 vs 0.734) s u g g e s t t h a t t h i s mode l i s m o r e 
robus t . 

T h e c ross -va l ida ted r 2 v a l u e s h o w e v e r v a r y m o r e 
s ignif icant ly , from 0.478 in t h e s t e p w i s e m o d e l to 0 .576 
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F i g u r e 3. Three-dimensional representation of the correlation 
matrix derived from PCA of the 37 physicochemical properties 
calculated by TSAR. Selected descriptors are colored red and 
are as follows: (i) surface area (vector 6), (ii) log P and log P1 

(vectors 2 and 3), (iii) total dipole (vector 4), and (iv) number 
of methyl groups colored green (vector 5). a:-Axis: principal 
component 1. y-Axis: principal component 2. z-Axis: principal 
component 3. 

Table 4. Results of Multiple Regression Analyses Derived 
from Classical QSAR Descriptors with and without Stepping 
Procedure 

analysis" 

1» 

r2 

0.671 
0.615 

r(cv)2 

0.576 
0.478 

PRESS 

14.83f 
18.25 

F value 

8.97 
19.95 

s value 

0.723 
0.734 

" Regression was obtained using classical QSAR descriptors: 
surface area, log P, log P2, total dipole, and number of methyl 
groups. * Regression was derived without stepping procedure 
implemented.c Regression was derived with stepping procedure 
W 1 . - = 2.0; C l e a v e = 2.0). 

in t h e basic regress ion model . Consequen t ly t h e P R E S S 
va lue for t h e bas ic model is lower t h a n t h e P R E S S va lue 
for t h e s t e p w i s e mode l (14.83 vs 18.25), s u g g e s t i n g 
b e t t e r p red ic t ive abi l i ty of t h e fo rmer model . A l t h o u g h 
t h e h i g h e r F v a l u e (19.95 vs 8.97) of t h e s t epwise mode l 
s e e m s to con t r ad i c t t h i s conclusion, F v a l u e s from 
s t e p w i s e p r o c e d u r e s a r e often o v e r e s t i m a t e d by t h e 
i n h e r e n t b ias of t h e v a r i a b l e select ion p reces s . 5 0 Ac­
co rd ing to t h e g e n e r a l consensus 5 1 t h a t t h e mode l w i t h 
h i g h e r r2 a n d r(cv)2 v a l u e s t h a t a r e r e a s o n a b l y close to 
each o t h e r should be t h e mos t robus t one w i t h predict ive 
po t en t i a l , t h e b e s t r eg re s s ion e q u a t i o n s a r e a s follows. 

Regres s ion e q u a t i o n (or ig ina l d a t a ) : 

Y =2.191X1 - 0 . 4 2 8 X 2 - 0 .36LX3 -
0 .083X4 - 0 . 0 1 6 X 5 + 8 .055 ( l a ) 

Regres s ion e q u a t i o n ( s t a n d a r d i z e d da t a ) : 
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Table 5. Results of Partial Least Square Analyses 

a. Using Different Sets of Carbo Potential Similarity Indices with Gaussian Function Approximation 

shape 

28 
28 
28 
28 

28 
28 
28 

shape 

28 
28 
28 
28 

28 
28 
28 

Carbo potential 

electrostatic 

28 
28 
28 

28 
28 

28 
28 

similarity indices 

lipophilic 

28 
28 

28 
28 

28 

28 

28 

refractivity 

28 

28 
28 
28 

28 

28 
28 

vector" 

1 
1 
2 
1 
1 
2 
1 
3 
1 
2 
1 

b. Using Different Sets of Carbo Atomic Field Similarity Indices 

Carbo shape and field similarity indices 

electrostatic 

28 
28 
28 

28 
28 

28 
28 

lipophilic 

28 
28 

28 
28 

28 

28 

28 

refractivity 

28 

28 
28 
28 

28 

28 
28 

vector" 

1 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 

r2 

0.647 
0.671 
0.713 
0.595 
0.608 
0.792 
0.613 
0.640 
0.533 
0.713 
0.543 

ricv)2 

0.603 
0.618 
0.590 
0.547 
0.559 
0.670 
0.562 
0.574 
0.451 
0.556 
0.496 

st sign" 

0.630 
0.618 
0.951 
0.673 
0.664 
0.946 
0.662 
0.986 
0.741 
0.961 
0.710 

RSS 

9.54 
8.89 
7.76 

10.94 
10.59 

5.63 
10.45 

9.72 
12.61 

7.76 
12.34 

and/or Carbo Shape Potential Similarity Indices 

r2 

0.692 
0.710 
0.779 
0.630 
0.713 
0.815 
0.635 
0.620 
0.655 
0.846 
0.647 

r(cv)2 

0.638 
0.644 
0.712 
0.572 
0.646 
0.727 
0.571 
0.563 
0.561 
0.737 
0.586 

st sign* 

0.602 
0.598 
0.891 
0.654 
0.595 
0.901 
0.655 
0.943 
0.662 
0.987 
0.644 

RSS 

8.31 
7.84 
5.98 
9.99 
7.74 
5.00 
9.78 

10.29 
9.31 
4.17 
9.59 

PSS 

10.71 
10.32 
11.08 
12.22 
11.91 
8.91 

11.82 
11.49 
14.81 
12.00 
13.61 

PSS 

9.77 
9.61 
7.79 

11.56 
9.57 
7.38 

11.58 
11.80 
11.85 

7.10 
11.19 

a Number of vectors calculated represents the total number of cycles of the PLS algorithm used in analysis. h Statistical significance. 

Y= 1.658(±0.489)S7 - 1.767(±0.069)S2 -
0.460(±0.056)S3 - 0.070(±0.267)S4 -

0.447(±0.008)S5 + 7.355(±1.281) (lb) 

n = 28, r = 0.819, F(5,22) = 8.9, s = 0.723 

where Xl = log P,X2 = log P2, X3 = total dipole, X4 = 
number of methyl groups, and X5 = surface area. 

The regression equation suggests that the five chosen 
properties are not equally relevant. Examination of the 
absolute values of the coefficients in the regression 
equation with standardized data (eq lb) leads to the 
conclusion that the total dipole and the surface area of 
the N-terminus part of NKl antagonists under study 
are dominant and equally important factors in describ­
ing the affinity of the training set of compounds. 
Conversely the lipophilic properties Sl and S2 (which 
tend to cancel each other out for positive log P values) 
and the number of methyl groups (S4) make little or no 
contribution. It is interesting to note that both regres­
sion models, especially the better one with r2 = 0.671 
and r(cv)2 = 0.576, indicate a considerable improvement 
in comparison with the results obtained by PLS analysis 
with one PLS vector (r2 = 0.540 and Kcv)2 = 0.366), 
suggesting that MR is the better analysis method for 
the chosen dataset. However, in spite of this, the best 
derived model is still not robust enough and lacks high 
predictive power. 

The fact that descriptors commonly used in classical 
statistical analysis failed to identify a robust model in 
either MR or PLS analyses led to the idea that similarity 
indices used successfully in several reported QSAE. 
studies36-41 46 may provide a better set of descriptors for 
the compounds under study. Therefore both potential 
and field similarity indices were calculated comparing 
the electrostatic, lipophilic, and size- and shape-related 
properties of the N-terminus substituents to one an­

other. The resulting data table has significantly more 
columns than rows, and hence it was analyzed using 
PLS. The results of several PLS analyses using differ­
ent sets of similarity indices are summarized in Table 
5. 

The number of vectors calculated in each analysis was 
determined according to criteria defined by Stahle and 
Wold,40 stopping when the statistical significance of the 
current vector goes above a fixed value (1.0 by default). 
For each variable there is a regression coefficient and 
a jackknife estimate of the standard error on each 
coefficient at each step of the analysis. 

In the first PLS performed (Table 5a, row 1), the 
entire matrix of potential and shape similarity indices 
was submitted to analysis. The following 10 rows (Table 
5a, rows 2-11) represent results of PLS analyses where 
different sets of potential and/or shape similarity indices 
were used in the calculation. Table 5b is arranged in 
the same manner as Table 5a with the difference that 
instead of potential similarity indices, field similarity 
indices were used in the PLS analyses. The higher r-
and r(CV)2 (columns 3 and 4 in Table 5b vs columns 3 
and 4 in Table 5a) and the lower residual sum of squares 
(RSS) and predictive sum of squares (PSS) values 
(columns 6 and 7 in Table 5b vs columns 6 and 7 in 
Table 5a) indicate that more robust models are obtained 
by using field descriptors, which give information about 
dipolar interactions, rather than potential descriptors, 
which give information about the location and strength 
of ionic interactions between ligand and receptor. Simi­
lar findings have been reported elsewhere.41 

For each derived model in Table 5b, the r2 and r(cv)2 

values are close to each other which suggests that none 
of the models is overfitting the data. The most robust 
model (row 10 in Table 5b) was obtained when both 
electronic and size properties were used in the analysis. 
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Figure 4. Observed versus predicted pICso values for the 
N-terminus fragments in the training data set derived using 
PLS analysis on similarity matrices; r2 = 0.846, r(cv)2 = 0.737, 
and n = 28. 

Table 6. Results of Multiple Regression Analyses Using 
Different Numbers of PCs Extracted from Carbo Field and 
Shape Potential Similarity Indices 

no. of descriptors r(CV)2 F values s values 

15° 
9* 
& • 

3d 

0.829 
0.825 
0.801 
0.829 

0.326 
0.702 
0.706 
0.756 

38.75 
37.65 
32.23 
38.75 

0.499 
0.505 
0.538 
0.499 

" Analysis was performed using stepping procedure with default 
number of steps and all relevant PCs extracted from field and 
shape potential similarity indices. h Analysis was performed using 
stepping procedure with default number of steps and the first three 
PCs extracted from field similarity indices. c Analysis was per­
formed using stepping procedure with Ft0 enter 2 . 0 a n d t to leave 

2.0 and the first three PCs extracted from electrostatic and 
refractivity field similarity indices. d Analysis was performed using 
basic procedure and one PC extracted from each electrostatic and 
refractivity field similarity indices and shape potential similarity 
indices with Gaussian function approximation. 

It has r2 = 0.846, RSS = 4.17, PRESS = 7.10, and the 
best predictive ability, r(cv)2 = 7.37, and is shown in 
Figure 4. 

To check internally the robustness of the PLS models 
derived from the similarity indices, several MR analyses 
were also performed. Firstly, PCA was used on each 
set of field and shape similarity indices to reduce the 
large number of descriptors to a much smaller number 
of components t ha t still contain the same information. 
The resul ts of MR analyses on selected sets of PCs are 
summarized in Table 6. The first MR analysis per­
formed using the stepping procedure produced a very 
robust model (r2 = 0.829) but with insignificant predic­
tive power (Kcv)2 = 0.326). Therefore the predictive 
accuracy of the model will be much worse t han the s 
value of 0.499 suggests. However the other stepwise 
regression analyses (Table 6, rows 2 and 3) which used 
a smaller number of PCs produced models t ha t were 
both robust (r2 = 0.825 and 0.801) and with high 
predictive power (r(cv)2 = 0.702 and 0.706). The regres­
sion equation of the best derived model (r2 = 0.829, Kcv)2 

= 0.756, and s = 0.499) was obtained using the 
backward elimination procedure4 8 followed by basic 
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Figure 5. Observed versus predicted pIC5o values for the 
N-terminus fragments in the training data set derived using 
MR analysis on PCs extracted from similarity matrices; r2 = 
0.829, Kcv)2 = 0.756, and n = 28. 

regression analysis. It is displayed graphically in 
Figure 5 and numerically below. 

Regression equation (original data): 

Y = 0.387X2 + 0.572X2 + 0.445X3 + 7.335 (2a) 

Regression equation (standardized data): 

Y = 0 .394(±0.140)S1 + 0.582( ±0 .043 )52 + 
0 .454(±0 .056)53 + 7.355(±0.107) (2b) 

n = 28, r = 0.910, F(3,24) = 38.75, s = 0.499 

where Xl is a principal component extracted from the 
shape similarity indices, X2 is a principal component 
representing the electrostatic field similarity indices, X3 
is a principal component derived from the refractivity 
field similarity indices, and Sl-S3 are their respective 
s tandardized values. 

Inspection of the coefficients in eq 2b suggests t ha t 
the dominant descriptor in explaining the affinity of the 
t ra in ing set of compounds is related to the electronic 
distribution around the N-terminus subst i tuent and 
t ha t the shape and size of the subst i tuent also play 
significant al though not so dominant roles. This is in 
agreement with the observations obtained from the 
resul ts of the PLS analyses where the best model 
extracted also suggested the relevance of the same 
descriptors. 

The observed pICso values and their predicted pICso 
values together with their corresponding residuals 
derived using the best models from both the PLS and 
the MR analyses shown in Figures 4 and 5 are listed in 
Table 7. The residuals vary from 0.00 to 1.13 in the 
PLS model and from 0.06 to 1.42 in the MR model. The 
biggest differences between the observed and predicted 
pICso values in both models were obtained for compound 
23 whose affinity was overpredicted (observed IC50 = 
1100 nM vs predicted IC50(PLS) = 81 nM and IC50(MR) 
= 44 nM) and compound 1 whose affinity was under-
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Table 7. Observed pIC50 Values vs Predicted pICso Values and 
Corresponding Residuals for the Training Set of Compounds 

Table 8. Compounds Belonging to the QSAR Test Set 

compd 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

rms residuals 

PlC50 

9.26 
8.72 
8.70 
8.67 
8.62 
8.50 
8.00 
7.89 
7.80 
7.74 
7.72 
7.72 
7.70 
7.65 
7.57 
7.54 
7.48 
7.46 
7.37 
7.01 
6.85 
6.82 
5.96 
5.80 
5.68 
5.43 
5.14 
5.13 

PLS 
(r2 = 

T-(CV)2 

pICso 

analysis 
0.846; 

= 0.737) 

(predicted) residual 

8.54 
8.48 
8.86 
8.08 
8.44 
8.49 
7.50 
8.01 
7.69 
7.73 
7.95 
7.61 
7.36 
7.37 
7.94 
7.53 
8.19 
7.27 
7.37 
7.02 
7.63 
6.32 
7.09 
4.95 
6.08 
5.72 
5.45 
5.26 

0.72 
0.24 

-0 .16 
0.59 
0.18 
0.01 
0.50 

-0.12 
0.11 
0.01 

-0 .23 
0.11 
0.34 
0.28 

-0.37 
0.01 

-0 .71 
0.19 
0.00 

-0 .01 
-0 .78 

0.50 
-1 .13 

0.85 
-0.40 
-0 .29 
-0 .31 
-0 .13 

0.44 

MR analysis 
(r2 = 0.829; 

r(cv)2 = 

pICso 
(predicted 

8.46 
8.61 
9.10 
8.44 
8.45 
8.66 
7.43 
8.07 
7.40 
7.55 
7.80 
7.56 
7.43 
7.23 
7.85 
7.44 
7.99 
7.16 
7.52 
6.66 
7.59 
6.25 
7.36 
5.32 
5.80 
5.47 
5.76 
5.59 

0.756) 

residual 

0.80 
0.11 

-0.40 
0.23 
0.17 

-0 .16 
0.57 

-0 .18 
0.40 
0.19 

-0 .08 
0.16 
0.27 
0.42 
0.28 
0.10 

-0 .51 
0.30 

-0 .15 
0.35 

-0.74 
0.57 

-1 .40 
0.48 

-0 .12 
-0.04 
-0.62 
-0 .46 

0.46 

compd R 

predicted (observed IC50 = 0.55 nM vs predicted 
IC50(PLS) = 2.9 nM and IC50(MR) = 3.5 nM). 

The overprediction of compound 23 is due to the fact 
that this compound shares over 90% of overall shape 
and size similarities with the five most potent com­
pounds (IC50S between 0.55 and 2.4 nM) although its 
electronic properties are different (between 10% and 
40% similarity). Appropriate shape and size properties 
are one of the major reasons for the high affinity of the 
leading compounds according to both derived models, 
and therefore compound 23 is predicted to have a 
binding affinity of ~50 nM, although its overall elec­
tronic properties are not optimal. 

The predicted IC50 values for compound 1 are 5—6-
fold higher than its true affinity. The reason for this 
could lie with the fact that the training set contains only 
two compounds, 5 (IC50 = 2.4 nM) and 8 (IC50 = 13 nM), 
with physicochemical properties very similar to com­
pound 1 (<96% shape and size similarity and ~75% 
electronic similarity). Therefore compound 1 was pre­
dicted to have an affinity closer to the affinity of these 
compounds than to its actual value. 

The best models derived from both the PLS and MR 
analyses were also used to predict the binding affinities 
of a test set of 11 compounds (Table 8). Both PLS and 
MR analyses predict the same test compounds to have 
high binding affinity (~10 nM), namely, test6 and 
test9. Compound test6 has a methyl substituent in 
position 3 of the benzofuran ring and belongs to the 
same family of compounds as the high-affinity com­
pounds 1 (0.55 nM) and 5 (2.4 nM). It has 94% and 
76% electronic similarity, 99% and 95% shape simi­
larity, and 97% and 94% size similarity to those 
compounds. Its size is somewhat larger (molecular 
volume = 119.6 A3 in comparison with 106.5.4 A3 for 

tes t l 
test2 
test3 
test4 
test5 
test6 
test7 
test8 
test9 
test10 
t e s t l l 

CR2-12-quinoline) 
CH9-13-benzofuran) 
CH2-12-i3-F-benzofuram] 
CH2-[2-(3-Cl-benzofuran)] 
CH2-[2-!3-OCR;-benzofuran 
CH >-[2-( 3-CHi-benzofuran 1] 
CHo-i 2-OH-C6R; 1 
CH2-( 3-OH-C6R) 
CHo-f 2-F-S-CH3-C6H4) 
CH2-^-F-O-OH-C6H1) 
CR-12-F-S-CN-C6H4) 

Table 9. Observed pIC5o Values vs Predicted pIC5u Values and 
Corresponding Residuals for the Test Set of Compounds 

compd 

t e s t l 
test2 
test3 
test4 
test5 
test6 
test7 
test8 
test9 
testlO 
t e s t l l 

rms residuals 

PlC51. 

7.94 

7.89 
8.17 

PLS 
Ir 2 = 

r( cv )2 

PlC50 

analysis 
= 0.846; 
= 0.737) 

!predicted) residual 

6.99 
5.51 
7.40 
7.41 
7.06 
7.89 
6.92 
7.17 
7.83 
7.86 
7.03 

0.05 

0.72 
0.34 

0.46 

MR analysis 
if2 = 

ncv)2 = 

PlC50 

(predicted 

6.94 
5.24 
7.58 
7.56 
7.57 
7.99 
7.07 
7.40 
8.14 
7.92 
7.51 

0.829: 
0.756) 

1 residual 

-0 .05 

0.49 
0.03 

0.29 

compound 1 and 118.2 A3 for compound 5) which both 
models suggested to be beneficial for overall binding 
affinity. 

Similarly compound test9 is a member of the same 
congeneric series as compounds 2 - 4 and 6. They share 
more than 95% shape and size similarity and between 
43% (compound 2) and 88% (compound 6) electronic 
similarity. The overall high similarity in relevant 
properties to the high-affinity compounds 2 - 4 and 6 
suggested that test9 had the best potential to bind to 
the receptor with high affinity. 

As a consequence of these findings, compounds test6 
and test9 were synthesized and tested for their binding 
affinity. Additionally, compound test8 was also syn­
thesized and tested. This compound was chosen be­
cause it has >90% similarity in shape and size with 
compounds 2—4 and 6 but considerably different elec­
tronic properties (between 1% dissimilarity and 39% 
similarity). Therefore it was predicted to have moderate 
binding affinity (IC50(predicted) ~50 nM), but it was 
considered to be an interesting test of the overall 
relevance of the direction and magnitude of the N-
terminus dipole to binding affinity. 

The predicted pIC5o values for the selected compounds 
and their subsequently determined pIC50 values to­
gether with their residuals are shown in Table 9. 
Inspection of the data in Table 9 suggests that the 
experimentally observed values and QSAR-derived val­
ues are in good agreement (rms residuals = 0.46 (PLS) 
and 0.29 (MR)). Moreover the predicted IC50 value for 
compounds test6 (13 nM (PLS) and 10 nM (MR)), test8 
(68 nM (PLS) and 40 nM (MR)), and test9 (15 nM (PLS) 
and 7.2 nM (MR)) vs the observed IC50 values (12, 13, 
and 6.8 nM, respectively) are within the experimental 
error of the biological tests. 
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C o n c l u s i o n 

A comparison was made between the models derived 
from both PLS and MR analyses using conventional 
QSAR descriptors and similarity indices on the identical 
training and test datasets. The best correlations de­
rived using PLS and MR analyses on similarity matrices 
with their r2 values of 0.846 and 0.829 and correspond­
ing r(cv)2 values of 0.737 and 0.756 are superior to the 
best model obtained on conventional QSAR parameters 
from MR analysis (r2 = 0.671 and r(cv)2 = 0.576). These 
results are in contrast to previously reported results26 

which suggest that little or no advantage is obtained 
by using CoMFA methodology over the classical Hansch 
approach. Both potential and field similarity indices 
proved to be useful descriptors for deriving robust 3D-
QSAR models. Relevance of size, shape, and electro­
static field surrounding the N-terminus in defining 
binding affinity of the training set of compounds was 
emphasized. All the results discussed above indicated 
that by using either PLS or MR analysis with field and/ 
or shape potential similarity indices as descriptors, very 
robust models can be derived that also possess very 
powerful predictive abilities. The predicted affinities 
of the three compounds in the test set that were 
synthesized and experimentally tested subsequently 
were in the range of the average experimental error of 
the biological tests. The weakness of similarity matrices 
is that they are clearly dependent on the 3D alignment 
of the substituents and therefore more influenced by 
subjectiveness. In contrast, the classical QSAR ap­
proach is procedurally less difficult and time consuming 
but did not prove to be useful in deriving an equally 
robust model. Finally, the distinguished advantage of 
QSAR based on similarity indices is its ability to supply 
insight into the topographical properties essential for 
binding. 

E x p e r i m e n t a l S e c t i o n 

Biological Assay. NKl receptor-binding assay was per­
formed on human IM9 cells using the method given in ref 21. 

Chemistry. All compounds were prepared using methods 
analogous to those given in ref 21. Melting points were 
determined with a Mettler FP80 or a Reichert Thermovar hot-
stage apparatus. Proton NMR spectra were recorded on a 
Varian Unity +400 spectrometer; chemical shifts were re­
corded in parts per million (ppm) downfield from tetramethyl-
silane. IR spectra were recorded with the compound either 
neat (oils and liquids) or as a Nujol mull on a sodium chloride 
disk on a Perkin-Elmer System 2000 Fourier transform 
spectrophotometer. Optical rotations were determined with 
a Perkin-Elmer 241 polarimeter. Mass spectra were recorded 
with a Fisons VG Trio-2A or Finnigan MAT TSQ70 triple 
quadruple mass spectrometer. Element analyses were deter­
mined by Medac Ltd., Uxbridge, U.K. Normal-phase silica gel 
used for chromatography was Merck No. 9385 (230-400 
mesh); reverse-phase silica gel used was Lichroprep RP-18 
(230-400 mesh). For further details, see ref 21. 

The preparation methods and analytical data of the three 
novel compounds only are reported here. Compounds t es t6 , 
tes t8 , and t e s t9 were prepared using methods analogous to 
those given in ref 21 . The required s tar t ing alcohols 2-fluoro-
5-methylbenzenemethanol and 3-methylbenzofuran-2-metha-
nol were prepared by the reduction of commercially available 
carboxylic acids using NaBH4ZIa53 and a LiBH4 reduction of 
mixed anhydride, respectively. The acetic acid 3-(hydroxy-
methyDphenyl ester was prepared using the selective acylating 
agent l-acetyl-Lr/-l,2,3-triazolo[4,5-&]pyridine54 with 3-hy-
droxybenzyl alcohol. 

[B(R*,S*)]-[2-( l i?-Indol-3-yl)- l -methyl- l - [ ( l -phenyleth-
y l ) carbamoy l ] e thy l ] carbamic ac id 3 -methylbenzofuran-
2-yl m e t h y l e s t e r (test6): mp 7 5 - 7 8 0C; [a]2 2

D = +14° (c = 

0.15, MeOH); IR (film) 3322, 1720, 1657, 1494, 1455, 1246, 
1069, 742 cm-1; NMR (CDCl3) d 1.28 (3H, A, J = 6.8 Hz), 1.58 
(3H, s), 2.26 (3H, s), 3.22 ( IH, d, J = 14.7 Hz), 3.44 ( IH, d, J 
= 14.7 Hz), 4 .95-5 .02 ( IH, m), 5.11 ( IH, d, J = 13.2 Hz), 5.21 
( IH, d, J = 13.2 Hz), 5.30 ( IH, s), 6.34 ( IH, d, J = 7.3 Hz), 
6.70 ( IH, m), 7 .02-7.41 ( H H , m), 6 .48-7.49 (2H, m), 7.75 ( IH. 
s); MS m/e (FAB) 510.4 (M- -f H, 35), 466.3 (25), 447.4 (15), 
433.4 (17), 419.5 (21), 392.3 (21), 371.1 (28), 355.1 (21), 341 
(16), 325 (20), 281 (44), 236.9 (42). Anal. (C31H31N3O4) C, H, 
N. 

[ft(fl*,S*)]-[2-(lH-Indol-3-yl)-l-methyl-l-[(l-phenyl-
ethyl)carbamoyl]ethyl]carbamic Acid 3-Hydroxybenzyl 
Ester (test8). A saturated aqueous solution of K2CO3 (10 mL) 
was added to a solution of [i?CR*,S*)]-acetic acid 3-[[[[2-(Lr7-
indol-3-yl)-l-methyl-l-[(l-phenylethyl)carbamoyl]ethyl]car-
bamoyl]oxy]methyl]phenyl ester (400 mg, 7.8 mmol) in metha­
nol (10 mL) and stirred vigorously for 1 h. The reaction 
mixture was acidified using 2 N HCl, and the product was 
extracted using EtOAc (3 x 30 mL). The combined organic 
layers were dried (MgSO4) and evaporated under reduced 
pressure. The residue was purified using RP silica gel with 
MeOH/H20 followed by crystallization from MeOHTH2O to give 
test8 (320 mg, 87%) as white diamond plates: mp 91-93 0C; 
[a]19

D = + 10.6° (c = 0.5, MeOH); IR (film) 3341, 3058, 2979, 
1705, 1651, 1602, 1591, 1495, 1456, 1376, 1341, 1250, 1157, 
1072, 780, 741 cm-1; NMR (CDCl3) d 1.31 (3H, d, J = 6.8 Hz), 
1.59 (3H, s), 3.27 (IH, d, J = 14.6 Hz), 3.44 (IH, d, J = 14.4 
Hz), 4.95-5.07 (3H, m), 5.36 (IH, s), 5.90-6.10 (IH, br s), 6.42 
(IH, d, J = 7.8 Hz), 6.75-6.81 (3H, m), 6.84 (IH, d, J = 7.3 
Hz), 7.05-7.35 (9H, m), 7.57 (IH, d, J = 7.8 Hz), 8.09 (IH, s); 
MS m/e ( C D 472 (M* + H, 2), 471 (M+, 0.2), 348 (23), 322 
(8), 244 (27), 131 (11), 130 (60), 107 (100), 95 (32). Anal. 
(C28H29N3O4) C, H, N. 

[fi(i?*,S*)]-[2-(lH-Indol-3-yl)-l-methyl-l-[(l-phenyl-
ethyl)carbamoyl]ethyl]carbamic acid 2-fluoro-5-meth-
ylbenzyl ester (test9): mp 104-106 0C; [a]23

D = +7.7° (c = 
0.16, MeOH); IR (film) 3334, 2927, 1715, 1652, 1505, 1456, 
1251, 1072, 742 cm'1; NMR (CDCl3) 6 1.28 (3H, d, J = 7.2 
Hz), 1.60 (3H, s), 2.26 (3H, s), 3.24 (IH, A, J= 14.8 Hz), 3.45 
(IH, d, J = 14.8 Hz), 4.95-5.03 (IH, m), 5.06 (IH, d, J = 12.5 
Hz), 5.12 (IH, d, J = 12.0 Hz), 5.30-5.40 (IH, m), 6.34 (IH, d, 
J = 7.8 Hz), 6.79 -7.32 (12H, m), 7.56 (IH, d, J = 8.1 Hz), 
7.90-7.95 (IH, br s); MS m/e (FAB) 489.6 (17), 488.3 (M+ + 
H, 100), 444.3 (9), 358 (12), 322.6 (12), 304.3 (18), 295.3 (22). 
Anal. (C29H30FN3O3) C, H, N. 
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