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The ability of three-dimensional quantitative structure—activity relationships (QSARs) derived
from classical QSAR descriptors and similarity indices to rationalize the activity of 28
N-terminus fragments of tachykinin NK1 receptor antagonists was examined. Two different
types of analyses, partial least squares and multiple regression, were performed in order to
check the robustness of each derived model. The models derived using classical QSAR
descriptors lacked accurate quantitative and predictive abilities to describe the nature of the
receptor—inhibitor interaction. However models derived using 3D QSAR descriptors based on
similarity indices were both robust and significantly predictive. The best model was obtained
through the statistical analysis of molecular field similarity indices (n = 28, r= == ().846, r(cv)-
= 0.737,s = 0.987, PRESS = 7.102) suggesting that electronic and size-related properties are
the most relevant in explaining the affinity data of the training set. The overall qualitv and
predictive ability of the models applied to the test set appear to be very high, since the predicted
affinities of three test compounds agree with the experimentally determined affinities obtained

subsequently within the experimental error of the binding data.

Introduction

Substance P (SP),1? an undecapeptide neurotrans-
mitter, is one of five peptides belonging to the tachy-
kinin family, isolated from mammals. They all share a
common C-terminal sequence essential for biological
activity® > and are found throughout the peripheral and
central nervous systems.

SP interacts preferentially with the NK1 receptor, one
of at least three pharmacologically distinct tachykinin
receptor types,®” and it is thought to be involved in a
variety of biological actions including pain transmission
and neurogenic inflammation,®? vasodilation, smooth
muscle contraction, bronchoconstriction, saliva secre-
tion,!" and activation of the immune system. Therefore.
pain, inflammation, and asthma are potential thera-
peutic targets for SP antagonists.

The recognition of the keyv amino acid residues
responsible for antagonist activity!! 12 recently led to the
identification of several high-affinity small peptidic SP
antagonists.'? 1" However a number of potent nonpep-
tide NK1 tachykinin receptor antagonistsi® 2’ have been
identified primarily as a result of database screening.
The rational design strategy?! involved the independent
optimization of the N- and C-terminal structure—
activity relationships (SAR) of the compound shown in
Figure 1. Such an approach assumes that the binding
energies of the N- and C-terminus moieties are additive
as the ligand interacts with the receptor active site.*?
Following on from the SAR studies,?! this paper de-
scribes several quantitative structure—activity relation-
ship (QSAR) studies involved in defining and under-
standing the relationship between the properties of
N-terminus substituents of NK1 antagonists and their
overall affinities.

Firstly, models derived from classical QSAR descrip-
tors are presented and discussed. Although there are
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Figure 1. Chemical structure of compound 12,
many examples in the literature”* * where classical
QSAR descriptors have been used very successfully,
such techniques necessarily are limited by their in-
adequate treatment of the three-dimensional nature of
the compounds and their restricted applicability beyond
the limit of a congeneric series. ="

The biological action of drugs results essentially from
their chemical structure which adapts itself to the three-
dimensional structure of the receptor by forming a
complex with it. The receptor sees the drug in terms
of the intermolecular forces (mainly electrostatic and
steric) between them. Hence molecular descriptors
based on similarity of shape and/or electrostatic proper-
ties may be expected to correlate with binding affinity
of drugs. Therefore in the second set of QSAR analyses,
similarity indices representing steric. electrostatic and
lipophilic properties were introduced due to their topo-
graphical nature ?" ="

A measurement of how similar one molecule is to
another in respect of a chosen 3D property has proved
t0 be a useful parameter in studies of relationships
between molecular structure and binding affinity.-""
Correlations were derived mainly by relating binding
affinity to the similarity data obtained from comparison
to a single compound usually that with the highest
binding affinity.” > An alternative approach is to use
partial least squares (PLS)™" 1o analyze the correla-
tions between the affinity data and a data matrix
obtained bv calculating similarity indices between cach
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Chart 1. Three Alignment Points for Six Representative
Classes of N-Terminus Fragments
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molecule and every other. A similar approach was used
initially within the comparative molecular field analysis
(CoMFA) methodology®® which gave an excellent cor-
relation with the binding data for a steroid data set.
Recent results suggest that similarity matrices can be
used also to derive good QSAR models for many differ-
ent systems.?*! The results obtained using similarity
indices compare well with those achieved using
CoMFA.#!

Methods

All molecular modeling, calculations, and optimization
were performed using SYBYL?? versions 6.00 and 6.10
running on a Silicon Graphics Iris 4D/310GTX work-
station. Initially the assumption was made that the
overall 3D structure is the same for each N-terminus
substituent. Therefore only the N-terminus fragments
were used for the following reasons: (i) all the recent
and previously reported biological data®! are consistent
with a single competitive mode of binding; (ii) the
central and C-terminal parts of all molecules are identi-
cal, hence differences in binding should be associated
exclusively with the N-terminus part of the molecule;
and (iii) since some properties (similarity indices) used
in the QSAR analyses were associated with 3D-molec-
ular properties, small differences in such properties
would be emphasized by using the smaller N-terminus
fragments rather than being lost in the larger struc-
tures. Additionally, the calculation of the properties for
whole molecules would be significantly slower without
providing any additional information. The starting
fragments were extracted from the SYBYL fragment
library and energetically optimized using the TRIPOS
force field.*> The library is a database of small mol-
ecules which represent averaged geometries from the
Cambridge crystallographic data files. Any additional
atoms or groups were added using the modeling pro-
gram SYBYL with standard bond lengths and angles,
ensuring identical starting geometry for any given
substituent. Finally the resultant structures were
superimposed by least squares fitting as indicated in
Chart 1 using the FIT option within SYBYL. The
chosen alignment was defined by the first two atoms
as an obvious choice because they are common to all
molecules under study. The third atom was chosen such
that the dipole of the fitted molecule corresponded most
closely to the dipole of the most active compound.

Charges were calculated using the Charge-2 method.
Charge-2 is an empirical method which has been used
successfully in a wide variety of chemical classes.** It
is based on two fundamental chemical concepts: (i)
inductive effect in saturated molecules operating via the
atomic electronegativity and polarizability and (ii)
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Figure 2. Superimposed N-terminus molecular fragments of
the 28 NK1 antagonists.

Table 1. Definition of Variables Calculated by TSAR

variable definition of variables”
X1 molecular volume
X2 log P
X3 square of log P
X4 total dipole
X5 number of methyl groups
X6 surface area
X7 maments of inertia X-moment
X8 maments of inertia Y-moment
X9 moments of inertia Z-moment
X10 ellipsoidal volume
X11 molar refractivity
X12 molecular mass
X13 Kier shape index Kappaal
X14 Kier shape index Kappaa2
X15 Kier shape index Kappaa3
X16 flexibility (¢)
X17 total number of atoms
X18 number of C atoms
X19 number of heteroatoms
X20 total lipole
X21 moments of inertia x-axis length
X22 moments of inertia y-axis length
X23 moments of inertia z-axis length
X24 Kier connectivity index ChiVo
X25 Kier connectivity index ChiV1 (path)
X26 Kier connectivity index ChiV2 (path)
X27 Kier connectivity index ChiV3 (cluster)
X28 Kier connectivity index ChiV4 (cluster)
X29 Kier connectivity index ChiV5 (cluster/path)
X30 Kier connectivity index ChiV3 (path)
X31 Kier connectivity index ChiV4 (path)
X32 Kier connectivity index ChiV5 (path)
X33 Kier connectivity index ChiV5 (ring)
X34 Kier connectivity index ChiVeé (ring)
X35 Randic topological index
X36 Balaban topological index
X37 Wiener topological index

@ The variables are defined as described in ref 45.

Hiickel molecular orbital calculations for 7 systems
operating through the appropriate Coulomb and reso-
nance integrals.

All superpositioned molecular fragments shown in
Figure 2 were then loaded via SYBYL mol2 files into a
data table within the graphics-based QSAR program
TSAR* version 2.20. The original affinity data (ICs,
nM) for each molecule was entered into the table, and
a new affinity column was then generated by taking the
negative logarithm of the original data (pICsg). The
entire range of molecular properties was calculated
using TSAR (Table 1). The molecular property calcula-
tion in TSAR uses 3D-structural information stored in
the data table.

The concept of bioisosterism was used as the basis
for calculating similarity indices.? Similarity indices
represent a quantitative measure of the similarity
between two molecules on the basis of their size, shape,
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electronic distribution, lipid solubility, water solubility,
or chemical reactivity.*® There are two approaches to
calculating similarity indices, a grid-based method?82°
and a Gaussian approximation®’38, For grid-based
methods, a 3D grid of points surrounding the two
molecules is compared. The similarity calculations are
performed by numerical integration of the potential and
field across the 3D grid using the Carbo or Hodgkin
equations.?8?° The Carbo equation?® is sensitive to the
shape of a property's distributions but not to its overall
magnitude. The Hodgkin index?® was introduced in
order to increase the sensitivity of the formula to a
property's magnitude. Both indices are highly cor-
related, and there is hardly any difference in their
overall performance.4! The shape similarity indices are
calculated using Meyer’s*” modification of the Carbo and
Hodgkin equations based on the degree of overlap
between the two molecules. Grid-based potential, field,
and shape similarity evaluations are both time consum-
ing and dependent upon the grid size and increment.37-3%
The analytical method fits Gaussian curves to reproduce
the 1/r term (electrostatic potential)®? or the electron
density function for different atom types (shape).?® It
has been shown that the behavior of the Gaussian
functions in similarity calculations closely mirrors that
of the grid-based calculations but is much faster.3738

Therefore the following potential and field N x N
similarity calculations were performed (i) Carbo poten-
tial similarity indices with the Gaussian function ap-
proximation and (ii) Carbo atomic field indices—single-
point grid method.

All derived data were standardized by mean (zero)
and standard deviation (unity) and then analyzed using
various statistical techniques. Principal component
analyses (PCA) were performed on all similarity data
extracting only the components that explained up to
95% of the variance. Also correlations were derived
using PLS analysis?®4? with different number of prin-
cipal vectors®® and multiple regression (MR) analysis
with or without stepping procedures.*® For a well-
defined problem, both PLS and MR techniques should
give similar predictions.*® Cross-validation of all PLS
and MR analyses was performed to indicate if the
chance correlations® were obtained. It gives an esti-
mate of the true predictive power of the model. The
model is judged based on these predictions by comparing
predicted values with the exact values from each
compound that has been held out. The predictions are
then summed for the nth PLS (MR) dimension to obtain
a value for the predictive sum of squares (PRESS,,,) of
the model (uncertainty of the prediction).

Cross-validation is also used in the jackknife proce-
dure®®4 to estimate the standard deviation of the
regression coefficients. The procedure uses each of the
reduced matrices during the cross-validation to derive
a new set of regression coefficients. The spread in the
values of these coefficients is a conservative measure
of the standard deviation for each coefficient. The cross-
validation method used in each analysis was a fixed
pattern of three subsets of data.

The regression coefficients r? for the models derived
using PLS and MR analysis were compared together
with their corresponding r(cv)? and PRESS values.

Results and Discussion

The N-terminus training set shown in Table 2. was

Horwell et al.

Table 2. Binding Affinity Data for Compounds in Training Set

1
HNT
N
i H\/@
R. O)J\ N N
H o) :
compd R pIC50
1 CH;-(2-benzofuran) 9.26
2 CH»(2,4-diF-CgH3) 8.72
3 CHz-(Q-F-4-CH3-CsH3J 8.70
4 CH»-(2,5-diF-CgHs3) 8.67
5 CH;-(2-benzothiophene) 8.62
6 CH,-(2-F-CgHy) 8.50
7 CH,-(2-naphthalene) 8.00
8 CHj-[2-(7-OCH3s-benzofuran)] 7.89
9 CH,-14-OCH;3-CgHy) 7.80
10 CH»-(3,4-diCH3-CgH3) 7.74
11 CH,-(4-CH3-CgHy) 7.72
12 CH»-CgH; 7.72
13 CH,-(3-NH2-CeHy) 7.70
14 CH,-13-CH3-CgHy) 7.65
15 CH,-(4-C1-CgHy) 7.57
16 CHj-(3,4-diC1-CgH3) 7.04
17 CH,-(2-C1-C¢Hy) 7.48
18 CH,-(3-Cl-CgHy) 7.46
19 CH»-(3,4-diF-CgHgy) 7.37
20 CH,-(3,4-diOCH;3-CgHy) 7.01
21 CH,-[2-(5-OCH3-benzofuran)] 6.85
22 2-tetrahydronaphthalene 6.82
23 CH;-(4-OCOCH3-CgHy) 5.96
24 CH,-(3-NHCOCHC1-C¢Hy) 5.80
25 CHj-(9-anthracene) 5.68
26 CHy-(4-CHo;NHCO,C(CHs3)3-CgHy) 5.43
27 CH,-(3-NHSO,CH3-CgHy) 5.14
28 CH,-(3-NHCOCHj3-CgHy) 5.13

composed from the 28 NK1 antagonists resulting from
SAR on N-terminal group with known affinities (pICso
ranges between ~5.0 and 9.26).

PLS analyses were performed on the dataset with
pICso as the dependent variable (Y) and 37 calculated
physicochemical properties as the independent
variables—descriptors (X). The results of these analyses
are shown in Table 3. The number of PLS vectors
extracted in each analysis was determined according to
the following criteria: (i) stopping when the statistical
significance of the current vector goes above a fixed
value (1.0 by default),*° (ii) stopping at the first decrease
in PRESS, and (iii) stopping at the lowest value of
PRESS. The vectors represent the total number of
cycles of the PLS algorithm used in the analysis. Each
iteration improves the regression equation but increases
the risk of overfitting the data. These analyses were
performed in order to resolve which of the above criteria
gives the most robust model with significant predictive
potential. The model from the first of these analyses
contained only one statistically significant PLS vector,*°
the second model contained three PLS vectors, and the
third model four PLS vectors.

It is evident from Table 3 that none of the criteria
used derived an acceptable model. In the first case, the
model was not robust enough, r2 = 0.540, and did not
possess sufficient predictive power, r(cv)? = 0.366, and
in the other two cases, the model was overfitting the
data as indicated by the noticeable difference between
r? (0.779, 0.831) and the corresponding r(cv)? (0.508,
0.550).52 These results suggest that the classical QSAR
descriptors used may not be the optimal set for the
dataset under study.?> In addition to that, PLS does
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Table 3. Results of Partial Least Squares Analyses on 37
Classical QSAR Descriptors

statistical

analysis  vector® e rlev)? PRESS  significance
14 1 0.540 0.366  17.12 0.796
20 3 0.779  0.508 13.27 1.227
3 4 0.831 0.550 12.15 1.428

2 Number of vectors (components) represents the total number
of cycles of the PLS algorithm used in analysis. ® Number of
vectors included were up to a statistical significance of 1. * Number
of vectors included were up to the first decrease in PRESS.

¢ Number of vectors included were up to the lowest value of
PRESS.

not handle very well data with many descriptors as-
sociated with the one class of property (e.g., size, shape)
and only a few associated with the others (electronic and
hydrophobic property).*® In such a case, shape proper-
ties would dominate the analysis by being represented
with the majority of independent variables,*® but they
are not necessarily the most relevant properties in
describing the affinity data of the training set.

To distinguish between these two possibilities, the
same data table was subjected to MR analysis. To
reduce the number of descriptors to a level manageable
for MR analysis and to determine which of the 37
calculated physicochemical properties (see Table 1) were
highly correlated,’? PCA was implemented. The inspec-
tion of the correlation matrix resulting from PCA shown
graphically in Figure 3 allows the extraction of just one
representative property from each highly correlated
class. Ideally the chosen properties should be reason-
ably common and easy to understand and interpret.?!
The descriptors selected from each class of properties
are colored red in Figure 3 and are as follows: (i) steric
related property—surface area (vector 6), (ii} lipophilic
related property—log P and log P? (vectors 2 and 3), and
(iii) electronic related property—total dipole (vector 4).
Additionally the number of methyl groups indicated in
Figure 3 in green was also used in MR analysis. The
total lipole (vector 20 in Figure 3) is correlated to log P
and therefore was omitted from MR analysis. Kier's
ChiV6 (ring) connectivity index (vector 34 in Figure 3)
has only limited correlation (<50%) with other steric
(shape) properties, but it was not used in MR analysis
since it is difficult to understand and interpret its
meaning.’! The same argument was implemented in
elimination of the Balaban topological index (vector 36
in Figure 3) from any MR analysis. After selecting a
representative set of descriptors, several MR analyses
were performed with or without stepping procedures,
and the results are shown in Table 4.

In basic regression analysis, all selected X variables
are used to create a regression equation to predict Y.
In stepwise regression, a selection algorithm is used to
choose a subset of the X variables, from which a
regression equation is calculated. In the analysis with
stepwise regression, the derived model has only two
relevant descriptors (total dipole and surface area), both
of which are negatively correlated with affinity. Inspec-
tion of the data in Table 4 shows that both procedures
(basic and stepwise} produce models of comparable
quality. However the higher regression coefficient r?
of the stepwise model (0.671 vs 0.615) and the lower s
value (0.723 vs 0.734) suggest that this model is more
robust,

The cross-validated r? values however vary more
significantly, from 0.478 in the stepwise model to 0.576
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Figure 3. Three-dimensional representation of the correlation
matrix derived from PCA of the 37 physicochemical properties
calculated by TSAR. Selected descriptors are colored red and
are as follows: (i) surface area (vector 6), (ii) log P and log P?
(vectors 2 and 3J, (iii) total dipole (vector 4), and (iv) number
of methyl groups colored green (vector 5). x-Axis: principal
component 1. y-Axis: principal component 2. z-Axis: principal
component 3.

Table 4. Results of Multiple Regression Analyses Derived
from Classical QSAR Descriptors with and without Stepping
Procedure

analysis® re riev)? PRESS F value s value
1t 0.671  0.576 14.83f 8.97 0.723
2 0.615 0.478 18.25 19.95 0.734

¢ Regression was obtained using classical QSAR descriptors:
surface area, log P, log P2, total dipole, and number of methyl
groups. ” Regression was derived without stepping procedure
implemented. ¢ Regression was derived with stepping procedure
(F, = 2.0; Fis teave = 2.0).

in the basic regression model. Consequently the PRESS
value for the basic model is lower than the PRESS value
for the stepwise model (14.83 vs 18.25), suggesting
better predictive ability of the former model. Although
the higher F value (19.95 vs 8.97) of the stepwise model
seems to contradict this conclusion, F' values from
stepwise procedures are often overestimated by the
inherent bias of the variable selection precess.’’ Ac-
cording to the general consensus® that the model with
higher r? and r(cv)? values that are reasonably close to
each other should be the most robust one with predictive
potential, the best regression equations are as follows.

Regression equation (original data):

Y =2.191X1 — 0.428X2 — 0.361X3 —
0.083X4 — 0.016X5 + 8.055 (1a)

Regression equation (standardized data):
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Table 5. Results of Partial Least Square Analyses

Horwell et al.

a. Using Different Sets of Carbo Potential Similarity Indices with Gaussian Function Approximation

Carbo potential similarity indices

shape electrostatic lipophilic refractivity vector? r2 rtevi? st sign® RSS PSS
28 28 28 28 1 0.647 0.603 0.630 9.54 10.71
28 28 28 1 0.671 0.618 0.618 8.89 10.32

28 28 28 2 0.713 0.590 0.951 7.76 11.0
28 28 28 1 0.595 0.547 0.673 10.94 12.22
28 28 28 1 0.608 0.559 0.664 10.59 11.91
28 28 2 0.792 0.670 0.946 5.63 891
28 28 1 0.613 0.562 0.662 10.45 11.82
28 28 3 0.640 0.574 0.986 9.72 11.49
28 28 1 0.533 0.451 0.741 12.61 14.81
28 28 2 0.713 0.556 0.961 7.76 12.00
28 28 1 0.543 0.496 0.710 12.34 13.61

b. Using Different Sets of Carbo Atomic Field Similarity Indices and/or Carbo Shape Potential Similarity Indices
Carbo shape and field similarity indices

shape electrostatic lipophilic refractivity vector? r? ricv)? st sign? RSS PSS
28 28 28 28 1 0.692 0.638 0.602 8.31 9.77
28 28 28 1 0.710 0.644 0.598 7.84 9.61
28 28 28 2 0.779 0.712 0.891 598 7.79
28 28 28 1 0.630 0.572 0.654 9.99 11.56
28 28 28 1 0.713 0.646 0.595 7.74 9.57
28 28 2 0.815 0.727 0.901 5.00 7.38
28 28 1 0.635 0.571 0.655 9.78 11.58
28 28 2 0.620 0.563 0.943 10.29 11.80
28 28 1 0.655 0.561 0.662 9.31 11.85
28 28 2 0.846 0.737 0.987 4.17 7.10
28 28 1 0.647 0.586 0.644 9.59 11.19

@ Number of vectors calculated represents the total number of cycles of the PLS algorithm used in analvsis. ” Statistical significance.

Y = 1.658(£0.489)S1 — 1.767(+0.069)S2 —
0.460(£0.056)S3 — 0.070(£0.267)S4 —
0.447(£0.008)S5 + 7.355(x1.281) (1b)

n = 28,r=0.819, F(5,22) = 8.9,5 = 0.723

where X1 = log P, X2 = log P?, X3 = total dipole, X¢ =
number of methyl groups, and X5 = surface area.

The regression equation suggests that the five chosen
properties are not equally relevant. Examination of the
absolute values of the coefficients in the regression
equation with standardized data (eq 1b) leads to the
conclusion that the total dipole and the surface area of
the N-terminus part of NK1 antagonists under study
are dominant and equally important factors in describ-
ing the affinity of the training set of compounds.
Conversely the lipophilic properties SI and S2 (which
tend to cancel each other out for positive log P values)
and the number of methyl groups (S4) make little or no
contribution. It is interesting to note that both regres-
sion models, especially the better one with r? = 0.671
and r(cv)?> = 0.576, indicate a considerable improvement
in comparison with the results obtained by PLS analysis
with one PLS vector (r2 = 0.540 and r(cv)? = 0.366),
suggesting that MR is the better analysis method for
the chosen dataset. However, in spite of this, the best
derived model is still not robust enough and lacks high
predictive power.

The fact that descriptors commonly used in classical
statistical analysis failed to identify a robust model in
either MR or PLS analyses led to the idea that similarity
indices used successfully in several reported QSAR
studies’6-41-46 may provide a better set of descriptors for
the compounds under study. Therefore both potential
and field similarity indices were calculated comparing
the electrostatic, lipophilic, and size- and shape-related
properties of the N-terminus substituents to one an-

other. The resulting data table has significantly more
columns than rows, and hence it was analyzed using
PLS. The results of several PLS analyses using differ-
ent sets of similarity indices are summarized in Table
5.

The number of vectors calculated in each analysis was
determined according to criteria defined by Stahle and
Wold,* stopping when the statistical significance of the
current vector goes above a fixed value (1.0 by default).
For each variable there is a regression coefficient and
a jackknife estimate of the standard error on each
coefficient at each step of the analysis.

In the first PLS performed (Table 5a, row 1), the
entire matrix of potential and shape similarity indices
was submitted to analysis. The following 10 rows (Table
5a, rows 2—11) represent results of PLS analyses where
different sets of potential and/or shape similarity indices
were used in the calculation. Table 5b is arranged in
the same manner as Table 5a with the difference that
instead of potential similarity indices, field similarity
indices were used in the PLS analyses. The higher r?
and r(CV)? (columns 3 and 4 in Table 5b vs columns 3
and 4 in Table 5a) and the lower residual sum of squares
(RSS) and predictive sum of squares (PSS) values
(columns 6 and 7 in Table 5b vs columns 6 and 7 in
Table 5a) indicate that more robust models are obtained
by using field descriptors, which give information about
dipolar interactions, rather than potential descriptors,
which give information about the location and strength
of ionic interactions between ligand and receptor. Simi-
lar findings have been reported elsewhere.*!

For each derived model in Table 5b, the r? and r(cv)?
values are close to each other which suggests that none
of the models is overfitting the data. The most robust
model (row 10 in Table 5b) was obtained when both
electronic and size properties were used in the analysis.
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Figure 4. Observed versus predicted pICs, values for the
N-terminus fragments in the training data set derived using
PLS analysis on similarity matrices; r> = 0.848, r(cv)> = 0.737,
and n = 28.

Table 6. Results of Multiple Regression Analyses Using
Different Numbers of PCs Extracted from Carbo Field and
Shape Potential Similarity Indices

no. of descriptors re r(CV)? F values s values
157 0.829 0.326 38.75 0.499
9b 0.825 0.702 37.65 0.505
6¢ 0.801 0.706 32.23 0.538
3¢ 0.829 0.756 38.75 0.499

@ Analysis was performed using stepping procedure with default
number of steps and all relevant PCs extracted from field and
shape potential similarity indices. ? Analysis was performed using
stepping procedure with default number of steps and the first three
PCs extracted from fileld similarity indices. ¢ Analysis was per-
formed using stepping procedure with Fi; enter = 2.0 and Fi, jeave =
2.0 and the first three PCs extracted from electrostatic and
refractivity field similarity indices. ¢ Analysis was performed using
basic procedure and one PC extracted from each electrostatic and
refractivity field similarity indices and shape potential similarity
indices with Gaussian function approximation.

It has r2 = 0.846, RSS = 4.17, PRESS = 7.10, and the
best predictive ability, r(cv)? = 7.37, and is shown in
Figure 4.

To check internally the robustness of the PLS models
derived from the similarity indices, several MR analyses
were also performed. Firstly, PCA was used on each
set of fleld and shape similarity indices to reduce the
large number of descriptors to a much smaller number
of components that still contain the same information.
The results of MR analyses on selected sets of PCs are
summarized in Table 6. The first MR analysis per-
formed using the stepping procedure produced a very
robust model (72 = 0.829) but with insignificant predic-
tive power (r(cv)? = 0.326). Therefore the predictive
accuracy of the model will be much worse than the s
value of 0.499 suggests. However the other stepwise
regression analyses (Table 6, rows 2 and 3) which used
a smaller number of PCs produced models that were
both robust (2 = 0.825 and 0.801) and with high
predictive power (r(cv)? = 0,702 and 0.706). The regres-
sion equation of the best derived model (> = 0.829, r(cv)?
= 0.756, and s = 0.499) was obtained using the
backward elimination procedure*® followed by basic
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Figure 5. Observed versus predicted pICsy values for the
N-terminus fragments in the training data set derived using

MR analysis on PCs extracted from similarity matrices; r? =
0.829, ricv)? = 0.756, and n = 28.

regression analysis. It is displayed graphically in
Figure 5 and numerically below.
Regression equation (original data):

Y = 0.387X1 + 0.572X2 + 0.445X3 + 7.335  (2a)
Regression equation (standardized data):

Y = 0.394(£0.140)S1 + 0.582(£0.043)S2 +
0.454(£0.056)S3 + 7.355(+0.107) (2b)

n = 28, r = 0.910, F(3,24) = 38.75, s = 0.499

where X1 is a principal component extracted from the
shape similarity indices, X2 is a principal component
representing the electrostatic field similarity indices, X3
is a principal component derived from the refractivity
field similarity indices, and S1—S3 are their respective
standardized values.

Inspection of the coefficients in eq 2b suggests that
the dominant descriptor in explaining the affinity of the
training set of compounds is related to the electronic
distribution around the N-terminus substituent and
that the shape and size of the substituent also play
significant although not so dominant roles. This is in
agreement with the observations obtained from the
results of the PLS analyses where the best model
extracted also suggested the relevance of the same
descriptors.

The observed pICso values and their predicted pICso
values together with their corresponding residuals
derived using the best models from both the PLS and
the MR analyses shown in Figures 4 and 5 are listed in
Table 7. The residuals vary from 0.00 to 1.13 in the
PLS model and from 0.06 to 1.42 in the MR model. The
biggest differences between the observed and predicted
pICs0 values in both models were obtained for compound
23 whose affinity was overpredicted (observed ICsq =
1100 nM vs predicted IC5¢(PLS) = 81 nM and IC5¢(MR)
= 44 nM) and compound 1 whose affinity was under-
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Table 7. Observed plCso Values vs Predicted pICsp Values and
Corresponding Residuals for the Training Set of Compounds

PLS analysis

MR analysis

(r2 =0.846; (r?* = 0.829;
ricv)2=0.737) riev)z = 0.756)
pICso pICso
compd pICso (predicted) residual (predicted) residual

1 9.26 8.54 0.72 8.46 0.80
2 8.72 8.48 0.24 8.61 0.11
3 8.70 8.86 -0.16 9.10 -0.40
4 8.67 8.08 0.59 8.44 0.23
5 8.62 8.44 0.18 8.45 0.17
6 8.50 8.49 0.01 8.66 -0.16
7 8.00 7.50 0.50 7.43 0.57
8 7.89 8.01 -0.12 8.07 -0.18
9 7.80 7.69 0.11 7.40 0.40
10 7.74 7.73 0.01 7.55 0.19
11 7.72 7.95 -0.23 7.80 -0.08
12 7.72 7.61 0.11 7.56 0.16
13 7.70 7.36 0.34 7.43 0.27
14 7.65 7.37 0.28 7.23 0.42
15 7.57 7.94 -0.37 7.85 0.28
16 7.54 7.53 0.01 7.44 0.10
17 7.48 8.19 -0.71 7.99 -0.51
18 7.46 7.27 0.19 7.16 0.30
19 7.37 7.37 0.00 7.52 -0.15
20 7.01 7.02 -0.01 6.66 0.35
21 6.85 7.63 -0.78 7.59 -0.74
22 6.82 6.32 0.50 6.25 0.57
23 5.96 7.09 -1.13 7.36 -1.40
24 5.80 4.95 0.85 5.32 0.48
25 5.68 6.08 —0.40 5.80 -0.12
26 5.43 5.72 -0.29 5.47 —0.04
27 5.14 5.45 -0.31 5.76 -0.62
28 5.13 5.26 -0.13 5.59 -0.46
rms residuals 0.44 0.46

predicted (observed ICsq = 0.55 nM vs predicted
IC50(PLS) = 2.9 nM and IC;,(MR) = 3.5 nM).

The overprediction of compound 23 is due to the fact
that this compound shares over 90% of overall shape
and size similarities with the five most potent com-
pounds (ICsps between 0.55 and 2.4 nM) although its
electronic properties are different (between 10% and
40% similarity). Appropriate shape and size properties
are one of the major reasons for the high affinity of the
leading compounds according to both derived models,
and therefore compound 23 is predicted to have a
binding affinity of ~50 nM, although its overall elec-
tronic properties are not optimal.

The predicted IC5¢ values for compound 1 are 5—6-
fold higher than its true affinity. The reason for this
could lie with the fact that the training set contains only
two compounds, 5 (IC;, = 2.4 nM) and 8 (IC50 = 13 nM),
with physicochemical properties very similar to com-
pound 1 (<96% shape and size similarity and ~75%
electronic similarity). Therefore compound 1 was pre-
dicted to have an affinity closer to the affinity of these
compounds than to its actual value.

The best models derived from both the PLS and MR
analyses were also used to predict the binding affinities
of a test set of 11 compounds (Table 8). Both PLS and
MR analyses predict the same test compounds to have
high binding affinity (~10 nM), namely, test6 and
test9. Compound test6 has a methyl substituent in
position 3 of the benzofuran ring and belongs to the
same family of compounds as the high-affinity com-
pounds 1 (0.55 nM) and 5 (2.4 nM). It has 94% and
76% electronic similarity, 99% and 95% shape simi-
larity, and 97% and 94% size similarity to those
compounds. Its size is somewhat larger (molecular
volume = 119.6 A3 in comparison with 106.5.4 A3 for
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Table 8. Compounds Belonging to the QSAR Test Set

compd R

testl CHy-(2-quinoline?

test2 CH,- 3-benzofuran)

test3 CHjy-(2-13-F-benzofurani|
testd CH,-[2-(3-Cl-benzofuran)|
tests CH»-[2-{3-OCH3-benzofuran|
test6 CH,-[2-(3-CH3-benzofuran|
test? CHy-12-OH-C¢H s

test8 CH,-13-OH-CgH s

test9 CH,-(2-F-5-CH3-CgH,!
test10 CH-(2-F-5-OH-CsH;
testll CH;-(2-F-5-CN-CsH»

Table 9. Observed pICsy Values vs Predicted pICsy Values and
Corresponding Residuals for the Test Set of Compounds

PLS analysis

MR analysis

(r? = 0.846: r? = 0.829:
rievi? = 0.737: ricvi? = 0.7561
pICss pICic
compd pICsy tpredicted: residual (predicted: residual
testl 6.99 6.94
test2 5.51 5.24
test3 7.40 7.58
test4 741 7.56
tests 7.06 7.57
test6 7.94 7.89 0.05 7.99 -0.05
test? 6.92 7.07
test8 7.89 7.17 0.72 7.40 0.49
test9 8.17 7.83 0.34 8.14 0.03
test10 7.86 7.92
testll 7.03 7.51
rms residuals 0.46 0.29

compound 1 and 118.2 A2 for compound 5) which both
models suggested to be beneficial for overall binding
affinity.

Similarly compound test9 is a member of the same
congeneric series as compounds 2—4 and 6. They share
more than 95% shape and size similarity and between
43% (compound 2) and 88% (compound 6) electronic
similarity. The overall high similarity in relevant
properties to the high-affinity compounds 2—4 and 6
suggested that test9 had the best potential to bind to
the receptor with high affinity.

As a consequence of these findings, compounds test6
and test9 were synthesized and tested for their binding
affinity. Additionally, compound test8 was also syn-
thesized and tested. This compound was chosen be-
cause it has >90% similarity in shape and size with
compounds 2—4 and 6 but considerably different elec-
tronic properties (between 1% dissimilarity and 39%
similarity). Therefore it was predicted to have moderate
binding affinity (IC;c(predicted) ~50 nM), but it was
considered to be an interesting test of the overall
relevance of the direction and magnitude of the N-
terminus dipole to binding affinity.

The predicted pICso values for the selected compounds
and their subsequently determined pICso values to-
gether with their residuals are shown in Table 9.
Inspection of the data in Table 9 suggests that the
experimentally observed values and QSAR-derived val-
ues are in good agreement (rms residuals = 0.46 (PLS)
and 0.29 (MR)). Moreover the predicted IC;o value for
compounds test6 (13 nM (PLS) and 10 nM (MR)), test8
(68 nM (PLS) and 40 nM (MR)), and test9 (15 nM (PLS)
and 7.2 nM (MR)) vs the observed IC;, values (12, 13,
and 6.8 nM, respectively) are within the experimental
error of the biological tests.
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Conclusion

A comparison was made between the models derived
from both PLS and MR analyses using conventional
QSAR descriptors and similarity indices on the identical
training and test datasets. The best correlations de-
rived using PLS and MR analyses on similarity matrices
with their r? values of 0.846 and 0.829 and correspond-
ing r(cv)? values of 0.737 and 0.756 are superior to the
best model obtained on conventional QSAR parameters
from MR analysis (r2 = 0.671 and r{cv)? = 0.576). These
results are in contrast to previously reported results?®
which suggest that little or no advantage is obtained
by using CoMFA methodology over the classical Hansch
approach. Both potential and field similarity indices
proved to be useful descriptors for deriving robust 3D-
QSAR models, Relevance of size, shape, and electro-
static field surrounding the N-terminus in defining
binding affinity of the training set of compounds was
emphasized. All the results discussed above indicated
that by using either PLS or MR analysis with field and/
or shape potential similarity indices as descriptors, very
robust models can be derived that also possess very
powerful predictive abilities. The predicted affinities
of the three compounds in the test set that were
synthesized and experimentally tested subsequently
were in the range of the average experimental error of
the biological tests. The weakness of similarity matrices
is that they are clearly dependent on the 3D alignment
of the substituents and therefore more influenced by
subjectiveness. In contrast, the classical QSAR ap-
proach is procedurally less difficult and time consuming
but did not prove to be useful in deriving an equally
robust model. Finally, the distinguished advantage of
QSAR based on similarity indices is its ability to supply
insight into the topographical properties essential for
binding.

Experimental Section

Biological Assay. NK1 receptor-binding assay was per-
formed on human IM9 cells using the method given in ref 21.

Chemistry. All compounds were prepared using methods
analogous to those given in ref 21. Melting points were
determined with a Mettler FP80 or a Reichert Thermovar hot-
stage apparatus. Proton NMR spectra were recorded on a
Varian Unity +400 spectrometer; chemical shifts were re-
corded in parts per million (ppm) downfield from tetramethyl-
silane. IR spectra were recorded with the compound either
neat (oils and liquids) or as a Nujol mull on a sodium chloride
disk on a Perkin-Elmer System 2000 Fourier transform
spectrophotometer. Optical rotations were determined with
a Perkin-Elmer 241 polarimeter. Mass spectra were recorded
with a Fisons VG Trio-2A or Finnigan MAT TSQ70 triple
quadruple mass spectrometer. Element analyses were deter-
mined by Medac Ltd., Uxbridge, U.K. Normal-phase silica gel
used for chromatography was Merck No. 9385 (230—400
mesh); reverse-phase silica gel used was Lichroprep RP-18
(230—400 mesh). For further details, see ref 21.

The preparation methods and analytical data of the three
novel compounds only are reported here. Compounds test6,
test8, and test9 were prepared using methods analogous to
those given in ref 21. The required starting alcohols 2-fluoro-
5-methylbenzenemethanol and 3-methylbenzofuran-2-metha-
nol were prepared by the reduction of commercially available
carboxylic acids using NaBH./1,%® and a LiBH, reduction of
mixed anhydride, respectively. The acetic acid 3-(hydroxy-
methyl)phenyl ester was prepared using the selective acylating
agent l-acetyl-1H-1,2,3-triazolo[4,5-6]pyridine®* with 3-hy-
droxybenzyl alcohol.

[R(R*,S*)]-[2-(1H-Indol-3-y])-1-methyl-1-{(1-phenyleth-
ylearbamoyljethyllcarbamic acid 3-methylbenzofuran-
2-yl methyl ester (test6): mp 75—78 °C; {al*’p = +14° (c =
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0.15, MeOH); IR (film) 3322, 1720, 1657, 1494, 1455, 12486,
1069, 742 em™1; NMR (CDCl;) 6 1.28 (3H, d, J = 6.8 Hz), 1.58
(8H, s), 2.26 (3H, s), 3.22 (1H, d, J = 14.7 Hz), 3.44 (1H, d, J
=14.7Hz),4.95-5.02 (1H, m), 5.11 (1H, d, J = 13.2 Hz), 5.21
(1H, d, J = 13.2 Hz), 5.30 (1H, s), 6.34 (1H, d, J = 7.3 Hz),
6.70 (1H, m), 7.02—7.41 (11H, m), 6.48—7.49 (2H, m), 7.75 (1H,
3); MS m/e (FAB) 510.4 (M~ + H, 35), 466.3 (25), 447.4 (15),
433.4 (17), 419.5 (21), 392.3 (21), 371.1 (28), 355.1 (21), 341
(16), 325 (20), 281 (44), 236.9 (42). Anal. (C3;Hy:N304) C, H,
N.

[R(R*,S%)]-[2-(1H-Indo]-3-y])-1-methyl-1-[(1-phenyl-
ethyl)carbamoyllethyllcarbamic Acid 3-Hydroxybenzyl
Ester (test8). A saturated aqueous solution of K,CO3 (10 mL)
was added to a solution of [R(R*,S*)]-acetic acid 3-[{[{2-(1H-
indol-3-yl)-1-methyl-1-{(1-phenylethyl)carbamoyl]ethyl]car-
bamoylloxylmethyllphenyl ester (400 mg, 7.8 mmol) in metha-
nol (10 mL) and stirred vigorously for 1 h. The reaction
mixture was acidified using 2 N HCI, and the product was
extracted using EtOAc (3 x 30 mL). The combined organic
layers were dried (MgSO,) and evaporated under reduced
pressure. The residue was purified using RP silica gel with
MeOH/H,0 followed by crystallization from MeOH/H-O to give
test8 (320 mg, 87%) as white diamond plates: mp 91-93 °C;
[a)® = + 10.6° (c = 0.5, MeOH); IR (film) 3341, 3058, 2979,
1705, 1651, 1602, 1591, 1495, 1456, 1376, 1341, 1250, 1157,
1072, 780, 741 cm™!; NMR (CDCly) 6 1.31 (3H, d, J = 6.8 Hz),
1.59 (3H, s), 3.27 (1H,d, J = 14.6 Hz), 344 (1H, d, J = 144
Hz),4.95—-5.07 (3H, m), 5.36 (1H, 5), 5.90—6.10 (1H, br s), 6.42
(1H, d, J = 7.8 Hz), 6.75—6.81 (3H, m), 6.84 (1H, d, J = 7.3
Hz), 7.056—7.35 (9H, m), 7.57 (1H, d, J = 7.8 Hz), 8.09 (1H, s);
MS m/e (CI7) 472 (M* + H, 2), 471 (M*, 0.2), 348 (23), 322
(8), 244 (27), 131 (11), 130 (60), 107 (100), 95 (32). Anal.
(CasHa9N304) C, H, N.

[R(R*,S%)]-[2-(1H-Indo0]-3-y])-1-methyl-1-{(1-phenyl-
ethyl)carbamoyllethyllcarbamic acid 2-fluoro-5-meth-
ylbenzyl ester (test9): mp 104—106 °C; [a)?’p = +7.7° (c =
0.16, MeOH); IR (film) 3334, 2927, 1715, 1652, 1505, 1456,
1251, 1072, 742 cm™}; NMR (CDCl3) 6 1.28 (3H, d, J = 7.2
Hz), 1.60 (3H, s), 2.26 (3H, s), 3.24 (1H, d, J = 14.8 Hz), 3.45
(1H, d, J = 14.8 Hz), 4.95-5.03 (1H, m), 5.06 (1H, d, J = 12.5
Hz),5.12 (1H,d,J = 12.0 Hz), 5.30—5.40 (1H, m), 6.34 (1H, d,
J =178 Hz), 6.79 —7.32 (12H, m), 7.56 (1H, d, J = 8.1 Hz),
7.90-7.95 (1H, br 3); MS m/e (FAB) 489.6 (17), 488.3 (M™ +
H, 100), 444.3 (9), 358 (12), 322.6 (12), 304.3 (18), 295.3 (22).
Anal. (CxH3FN3O3) C, H, N.
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